

Provisioning Data Science in E&P Dr Duncan Irving

How we understand and interact with each other

How organisations understand and interact with us

How we interact with technology and services

How we exploit knowledge... at scale and pace

Disruption is upon us – how do we exploit all the new data?

Data-driven analytical architectures

Heavy industry analytical architectures

In E&P:

Raw data is too siloed

But.

Our workflows haven't really changed much since the first data started coming back to shore with the oil...

"New data" comes in three flavours

It comes from	lt can contain	It has impact
Fleets: from lots and lots of similar things	Outliers: Which of my things are behaving differently?	"Fleet-wide" 24/7 for holistic management
Systems: across the same big "thing"	Emergent behaviour: Is my system changing to a new state?	High-level KPIs at business units and facilities level
Collectors: "big models" or monitoring	Events: are there hidden signals?	Performed at sub- second level and data kept for decades

...but that looks a lot like the old data!

Yes, but the KPIs are different

- Business related
- Business budgets, not IT (Low Capex / spend from Opex)
- Show business value early, and continuously

Our data managers are **highly skilled** "**librarians**"

- curate measurement data
- Ad hoc management of interp
- "work to spec"

...but want to deploy their domain expertise much more!

How do other industries deal with this?

Shine a light – see what's in your data

So how do I get started?

Source: xkcd.com

"With a small project, an open mind and a big vision"

We've heard about the data. So where's the science?

We're still not really sure what use Geostatistics is

You're going to revolutionize E&P with a scripting language, some stats packages and some random data?

...and where's your

data governance?

Google flu trends let us down

Home	News	Journals	Topics C	areers	
Science	Science Advances	Science Immunology	Science Robotics	Science Signaling	Science Translational Medicine

SHARE

a

David Lazer^{1,2,*}, Ryan Kennedy^{1,3,4}, Gary King³, Alessandro Vespignani^{5,6,3}

+ Author Affiliations

POLICY FORUM | BIG DATA

"Corresponding author. E-mail: d.lazer@neu.edu.

Science 14 Mar 2014: Vol. 343, Issue 6176, pp. 1203-1205 DOI: 10.1126/science.1248506

Case Study #1 Basin-scale prospectivity analytics

Pragmatic data model from:

- LAS files
- Well headers
- Mud logs
- Well summary
- Completion Report
- A well constrained vocabulary was fundamental to enabling numerical analysis

Formation Name	Member Name	New Formation Name	New Member Name
Moki Formation	Moki	Moki Formation	Moki A Sandstone
	Moki A		Moki B Sandstone
	Moki A Sandstone		
	Moki A SS		
	Moki B		
	Moki B Sandstone		
	Moki B Sandstone interval		
	Moki B Equivalent		
	Moki Equivalent		

- 6 week MSc project at University of Manchester with New Zealand public data
- 3 weeks spent on data prep and engineering

Case Study #1 Basin-scale prospectivity analytics

Workflow to classify interbedded sandstone/mudstone and sandstone/siltstone facies:

- A much clearer, simpler reservoir model with 62 members in 17 formations
- An open-ended model to incorporate other data (e.g. production histories)
- Ask any question of the data with spatial, chronological and logical relationships at scale
- Identified overlooked pay features (hot shales) and re-classified others (interbedded facies)

Case Study #2 Drilling and Well analytics: Planning

Formations

 Modern D&W activities already generate a large number of parameters and will generate even more in the near future

- How will oil and gas operators ensure safe, accurate, efficient and economical D&W operations?
- CGG has access to geology, petrophysics, wells, and drilling data
- Teradata provides analytical platform to run complex data analyses
- We can identify trends, patterns, and risks in D&W domains and suggest optimal parameters for D&W
 planning and operations

Case Study #3 Drilling and Wells analytics: Operations

- surface and downhole
- metadata relating to well and drill string
- bit damage severity and profile
- well position and trajectory
- petrophysical information

- "It's just hard formation that's the way it is".
 Unpredictable and repeated failures occur. Some single-trip sections achieved, but success/failure criteria not understood
- look for patterns to that will inform better operational decisions: increase drilling efficiency to avoid catastrophic bit damage
- An 8-week Data Science study across scientific and operational datasets identified \$17M of savings in drilling practice

Case Study #3 Drilling and Wells analytics: Operations

- Find combinations of a wide range of drilling parameters likely to avoid bit failure and model alarms to
 ensure efficient drilling
- Create rules for best practice during operations based on ever-growing knowledge base
- Consistently drill horizontal section in a single trip in hard formations

Case Study #5 4D Seismic acquisition analytics

- Navigation, gun array, Met/Ocean and seismic trace data from 4D surveying
- How can data be integrated for analysis and possible operationalization?
- What is there of value in the multitude of file formats?
- What are the analytical questions?
- What approaches?
- Lots of science v. lots of stats!
- What value in the answers?
- One-off insight or should it be operationalised?

What should a data science team look like?

- No such thing as a perfect data scientist
- For deployment you need platform expertise
- You need outstanding data management and data engineering skills (and culture)

Data Management Learnings

- Loading into granular form
- Single view of data for whole team (cloud, or on premise)
- No up-front modelling
- Clear documentation and audit trail
- Keep loaders in a repository so they can be reused –not bound to application import functionality
- Data Lineage reproducibility
- Data Quality profiling what numerical values make sense?

Data Engineering Learnings

- How should data be stored?
 - Granular
 - Profiles of activity e.g. regular frequency profile instead of storing complete time series
 - Profiles of valuable **patterns**
- Use a scalable platform (MPP)
- Use a universal language where possible e.g. python
 - Data Analysis sciPy, NumPy require scientific and numerical prowess
 - APIs into other domains e.g. HPC, filesystem, visualisation

Data Mining Learnings

- Keep data online and accessible one-off studies may lead to a more operationalised event processing usage
- **Profile incoming data** regularly (e.g. production time series every few minutes across a reservoir) keep profiles as descriptions of system states
- Store well-understood patterns of behaviour for repeatable mining (i.e. where have I seen this before?)
- Document activity continuously people and skills are fluid through the life time of data. What has worked, what hasn't worked, what approaches were considered but never picked up?

Business Impact Learnings

- Domain understanding is vital
- Have a well-scoped value proposition
- Work in agile mode with regular, well-managed sprints (no fixed agenda, no free-for-all)
- Have good visualisations
- How will you deploy and operationalise your insights?

Duncan Irving duncan.irving@teradata.com @duncanirving