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Disruption is upon us — how do we exploit all the new data?

infinite sensors

massive data
volumes

unlimited

connectivity
scale and

diversity of data

cheap processing

operational time
imperative

high-end

visualisation y

3

scientific

business

optimise operations

The intelligent field




Data-driven analytical architectures

Designed to:
« work at scale
W « provision agility
« provide multi-directional flow
‘ « uUse “exhaust” data

y 4 4—»4—»4 -

I Analytics at

scale




Heavy industry analytical architectures

*i*’“"

CURUUR)

In E&P:

Raw data is foo siloed
Sensors are for operational
confrol, not business value
Acquisition is deliberate and
often cosftly

No Analytics at
scale






“New data” comes in three flavours

Fleets: Outliers: Which of my |
from lofs and lots of o things are behaving | “Fleef-wide” 24/7 for

similar things differentlye I AWM X¥  holistic management

Systems: across the e
same big “thing” —— ~ % Ismy system
S L ‘changing to a new
state?

— ' High-level KPIs at

business units and
facilities level

Collectors: “big = ~|Events: are there
models” or hidden signals?
aplelglifelfigle = '

- Performed at sub-
2 second level and data
kept for decades




...but that looks a lot like the old

datal

Yes, but the KPIs are different

» Business related

« Business budgets, not IT (Low Capex / spend
from Opex)

« Show business value — early, and confinuously .



Our different tribes speak different languages

FORTRAN

Matlab




How do other industries deal with this?

Matlab







So how do | get started?

CAN YOU PASS
THE SALT?

Source: xkcd.com

[T saD-
T KNOW! TH DEVELOPING
A SYSTEM D PASs YOU
ARBITRARY CONDIMENTS.

“With a small project, an open mind
and a big vision™




We’'ve heard abg

We're still not really sure
what use Geostatistics is

Google flu frends
let us down

—
Home News Journals Topics

POLICY FORUM  EIG DATA

The Parable of Google Flu: Traps in Big Data

Analysis

David Lazer?", Ryan Kennedy'>*, Gary King", Alessandro Vespignani>®-

or. E-mail: d.lazer@neu.edu.

Science Science Advances  Science Immunology  Science Robotics  Science Signaling  Science Translational Medicine

data. So where

\

You're going to
revolutionize E&P with @
scripting language, some
stats packages and some
random datfae

...and where's your
data governancee¢

Careers



Case Study #1
Basin-scale prospectivity analytics

Geological dato

Pragmatic data model from: S Fle version

LAS files —y
sUPAPary 'flll' Wl Tabke /‘\

Well headers

Mud IOgS g Logs foken II;' I ) ]

Well summary S e

Completion Report w|  Porameter ;’f o frct TeaaFomatian nd Membes Tobiles
A well constrained vocabulary Other o

was fundamental to enabling P
numerical analysis

Name

Moki Formation Moki Moki Formation Moki A Sandstone
6 week MSc project at University Moki A Moki B Sandstone
of Manchester with New Zealand Moki A Sandstone
public data Moki A S§
Moki B
3 weeks spent on data prep and ok B Sandstone
englneerlng Moki B Sandstone interval

Moki B Equivalent
Moki Equivalent



Case Study #1
Basin-scale prospectivity analytics

Workflow to classify interbedded sandstone/mudstone and sandstone/siltstone facies:

base analyfical APath Rebuild and Apply time

dataset dataset pivot \Zelfellgle el

3052 ME B ag P —— Flio paths I Create femplate Take top

EE CER [Tk B multiple of points and map onto centile of
- iii; windows into partitions in pre- matches and

built table then validate

(paths) separate
key-value
pairs and
rebuild as
table

calculate
goodness of fit
using DTW

A much clearer, simpler reservoir model with 62 members in 17 formations
An open-ended model to incorporate other data (e.g. production histories)

Ask any question of the data with spatial, chronological and logical relationships — at scale

|ldentified overlooked pay features (hot shales) and re-classified others (interbedded facies)




Case Study #2

Drilling and Well analytics: Planning Formations

Rate of  |[NEEEREE

| IRTIEYEN

W Hesd BB
rira-Bums Srale

W Kimrnaridoe Cay F
Lioiyer Bums

Data analytics across Drilling & Wells
is not typically performed due to
silos and limitations of existing
solutions

Tdunk kar Bad
W Flanus Mari [
lfunt
W I unt MEr
I oy |1
W sl b
\pper Buns
W Valhal FM
AEEDIAL |
0.nmn

AT RCF [Ivhe) =

'R, It 1000
B A s @ namn
T 3 000

Modern D&W activifies already A
generate a large number of MERRR-4 ) fe

: Borehole
parameters and will generate even  J R S

more in the near future ] F | P
] 5 1 t5 an -l‘s'-:j?i.'UHlkI:-: ap ae Welgh.l. on bl.l.

How will oil and gas operators ensure safe, accurate, efficient and economical D&W operations?
CGG has access to geology, petrophysics, wells, and drilling data
Teradata provides analytical platform to run complex data analyses

We can identify trends, patterns, and risks in D&W domains and suggest optimal parameters for D&W
planning and operations

16 Source: CGG-Teradata



Case Study #3
Drilling and Wells analytics: Operations

l.ﬂ.lll_h Furs

B0 . . . # Low Efficiency Bit Runs

surface and downhole
metadata relating to well

] H'pih Efficiency B RBuns :

Almost 80% of high

 PercenbEgs T
B 8

and drill string e damage. —

bit damage severity and B Rri nemieetl| |
i a0 high damage

profile ; scores

well position and trajectory @
petrophysical information 2

- . Damage Score

look for patterns to that will inform better operational decisions: increase drilling efficiency to avoid
catastrophic bit damage

An 8-week Data Science study across scienftific and operational datasets identified $17M of savings in
drilling practice




Case Study #3
Drilling and Wells analytics: Operations

WOB to Rotary

Energy Is early

warning to Low
Efficiency

Find combinations of a wide range of drilling parameters likely to avoid bit failure and model alarms to
ensure efficient drilling

Create rules for best practice during operations based on ever-growing knowledge base

Consistently drill horizontal section in a single trip in hard formations




Case Study #5

4D Seismic acquisition analytics

[ k
Pt ! |
PRM1 PC1vPC2 PRM2 PC1vPC2 Sail Line Num
i 30 30
Navigafion, gun array, Met/Ocean

and seismic frace data from 4D
surveying

10 1o 9

» >
How can data be integrated for ;o Q
analysis and possible
operationalization®
What is there of value in the
mulﬁ'l'ude Of file formg'l's? -30 -20 -10 PRM:]Pm* 10 20 30 -30 -20 -10 FRMgpc1* 10 20 30 —
What are the analytical questions? T M
What approachese
Lots of science v. lofs of stafs!

* *
What value in the answers?
One-off insight or should it be
operationalised? =
1400 1600 ;:(?Num 2000 2200 2400 1400 1600 ;:;{)Num 2000 2200 2400 5828 6380

19 © 2014 Teradata



What should a data science team look like?

Data
Engineering

7 -ﬂﬁ!

/

* No such thing as a perfect data
scientist

For deployment you need
platform expertise

You need outstanding data
management and data
engineering skills (and culture)

Domain
Expertise

Visualisation

20 © 2014 Teradata



Data Management Learnings

Loading into granular form

 Single view of data for whole tfeam (cloud, or on premise)

No up-front modelling
Clear documentation and audit trail

Keep loaders in a repository so they can be reused —not bound to
application import functionality

Data Lineage —reproducibility
Data Quality — profiling what numerical values make sense<¢

21 © 2014 Teradata
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Data Engineering Learnings

« How should data be stored?¢

— Granular

— Profiles of activity — e.g. regular frequency profile instead of storing complete time
series

— Profiles of valuable patterns
» Use a scalable platform (MPP)

« Use a universal language where possible e.g. python
— Data Analysis — sciPy, NumPy require scientific and numerical prowess
— APIls into other domains e.g. HPC, filesystem, visualisation

© 2014 Teradata
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Data Mining Learnings

- Keep data online and accessible — one-off studies may lead to a more
operationalised event processing usage

 Profile incoming data regularly (e.g. production fime series every few
minutes across a reservoir) — keep profiles as descriptions of system states

 Store well-understood patterns of behaviour for repeatable mining (i.e.
where have | seen this before?)

 Document activity continuously — people and skills are fluid through the
ife fime of data. What has worked, what hasn't worked, what
approaches were considered but never picked upe
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Value creation from data
Focus for
data integration

Gather data Operationalize Value
(old and new) (Continuous)

Discover Value Take Action
(One-off) (realize value)

Focus for Data Science
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Business Impact Learnings

Domain understanding is vital
Have a well-scoped value proposition

Work in agile mode with regular, well-managed sprints (no fixed
agendaq, no free-for-all)

Have good visualisations
How will you deploy and operationalise your insightse



The magic ingredients

Scientific
understanding

Analytical Statistical

engine framework

Domain
insight

26 © 2014 Teradata
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