

Using machine learning to stimulate ideas for geoscientists Some ideas for using text analytics in enterprise search to surface the unexpected

Paul H. Cleverley Robert Gordon University, UK

HOME / EXPLORER / Archive / April 2010 / Serendipity Is Explorationists' Friend

Mobile Bay a product of good fortune Serendipity Is Exploratic HARTENERGY Expand -

By BARRY FRIEDMAN, EXPLORER C

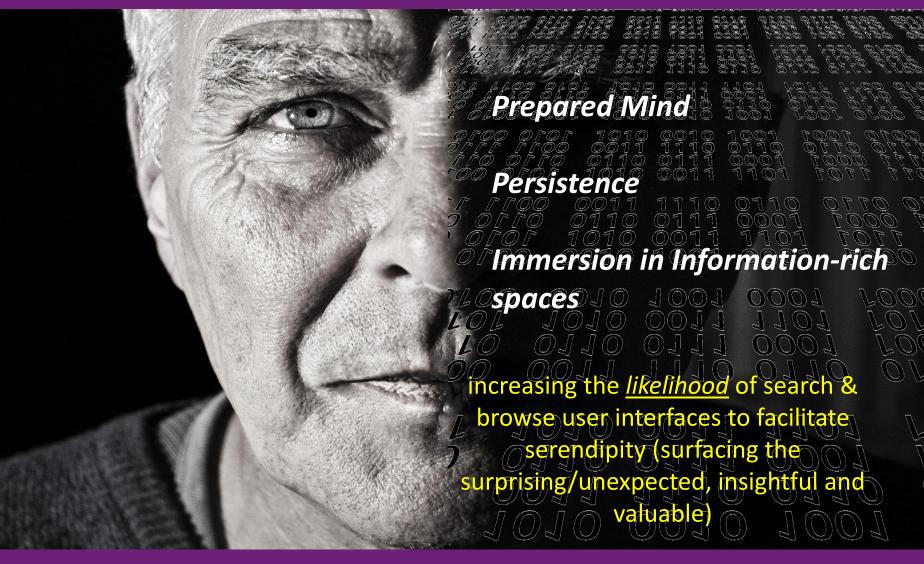
Like the size of fish and the exponential story of the catch, the historical account themselves to hyperbole.

In 1979, when MOEPSI, a wholly owne natural gas field in Alabama's lower Mo combination of luck, sound technical an environmental hurdles.

"I worked for Mobil for 37 years on five was exploration manager for the compa Mobil's big fields were found as a result

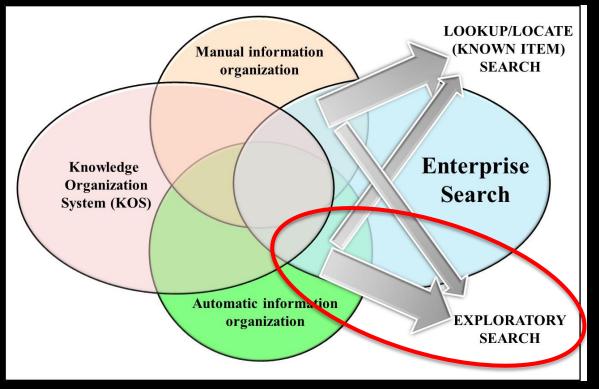
REGIONS + OFFSHORE + SUBSEA + EXPLORATION + PRODUCTION + UNCONVENTIONAL + TECHNOLOGY + MAGA

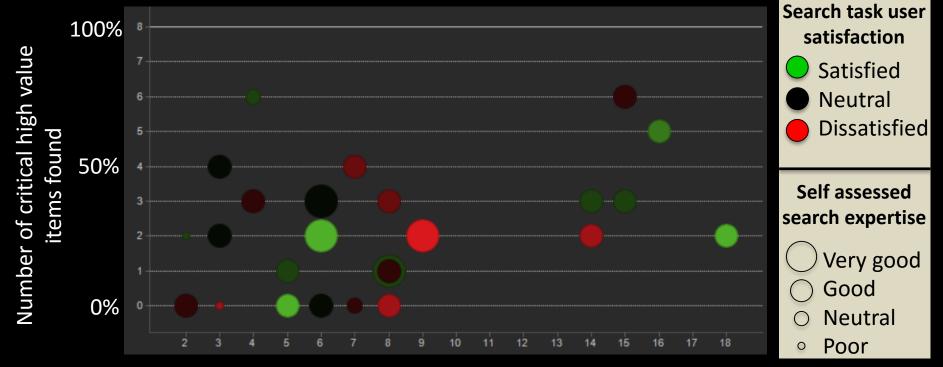
"Oil is first found, in the final analysis, in the minds of people" AAPG Pratt 1952


Learn n

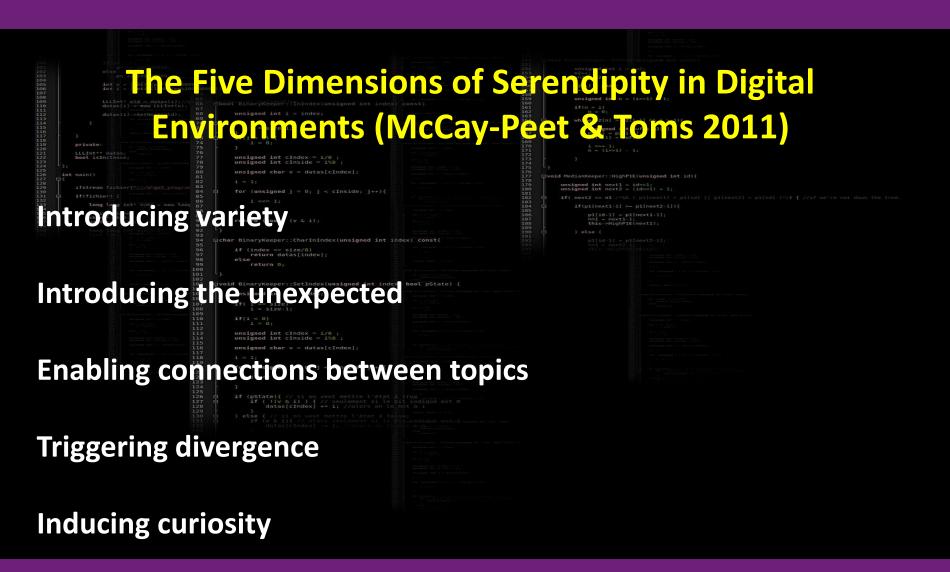
In the case of Mobile Bay, serendipity n Serendipity is alive and well at Eagle Ford

Exploration is in ideas business"


Exploration Team Lead January 2016


Information Searching: Two main goals (Marchionini 2006)

Journal of Knowledge Organization (Cleverley and Burnett 2015)

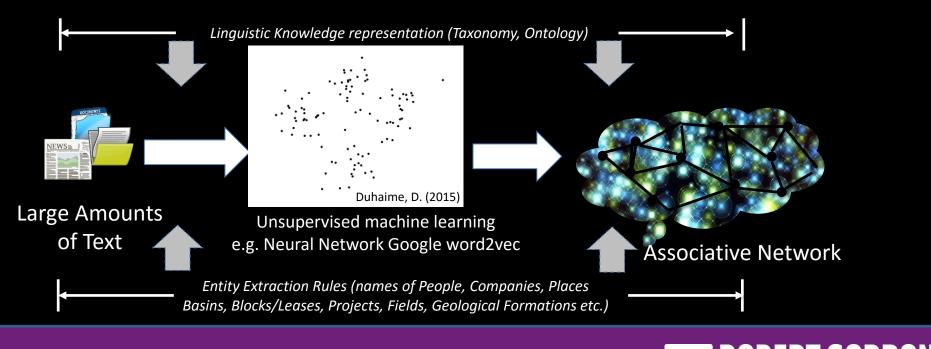

Enterprise search experiment - 26 Professionals in a case study O&G company Found only 27% of high value items on average but 60% satisfied.

Total number of search queries made across two search tasks

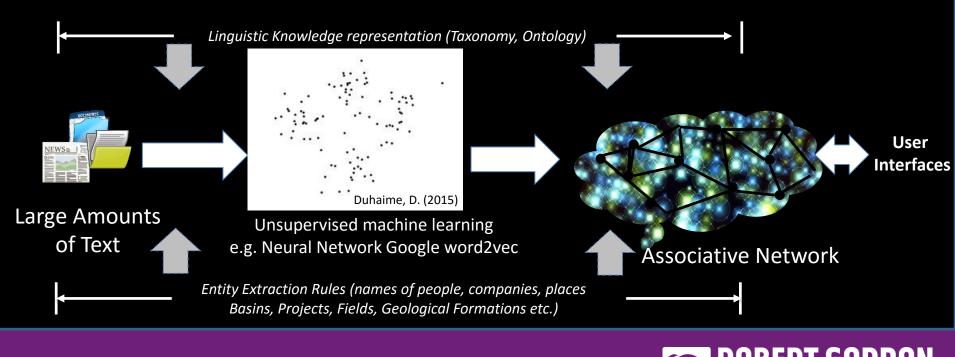
Journal of the Association for Information Science and Technology (Cleverley and Burnett 2015)

Issues and challenges for search user interfaces Social search is useful but ill suited some tasks. With collaborative filtering (social voting), always a risk of just '*discovery through the rear view mirror*'

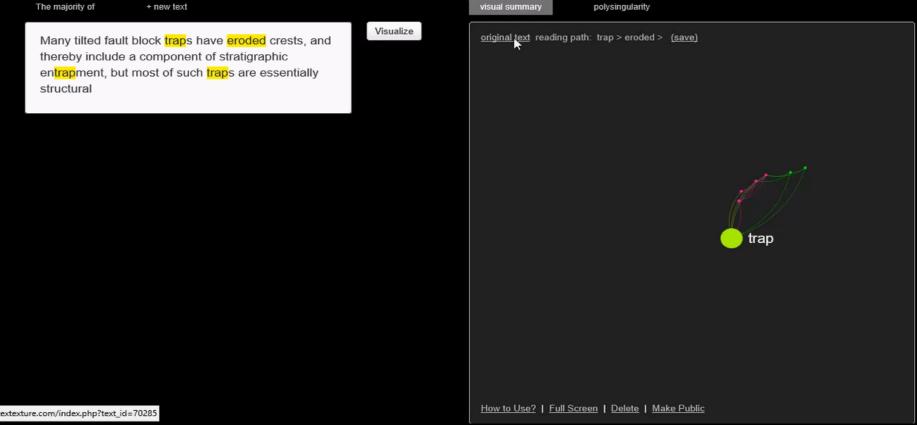
Enterprise search tends to focus on Lookup/Known Item not exploratory search. People don't complain in exploratory search 'we don't know what we don't know'


Faceted search refiners (prompts, a form of recommendation) to filter search results tend to use manual tags. Manually added tags are often poorly added to documents (if at all). A few tags cannot represent 'the unusual' or 'contextual' buried in and across reports

Suggesting the interesting & surprising but minimize the distracting. How?


Possible solution: Text embedding's/word co-occurrence

Using word co-occurrence in text, an associative network can be created through fast automated unsupervised machine learning. Where each word can be converted to numbers (vector) creating an n-dimensional vectorspace.



Possible solution: Text embedding's/word co-occurrence

Using word co-occurrence in text, an associative network can be created through fast automated unsupervised machine learning. Where each word can be converted to numbers (vector) creating an n-dimensional vectorspace.

Word association networks can be visualized

http://textexture.com/index.php?text_id=70285

What are the information need characteristics for word cooccurrence based search filters? (54 geoscientist & engineers)

List A	List B	List C
Drilling	lost circulation	differentially
Problems	problems such	freeing
Hole	well control	spotting
Lost	poor hole	incidents
Incidents	hole instability	sticking
Well	hole cleaning	risked
Risk	drilling operations	troubles
Cost	freeing differentially	jarring
Loss	while drilling	caving
Circulation	tight hole	sloughing
Reduced	open hole	costly

Journal of Information Science (Cleverley and Burnett 2014)

A = Unigram (Ranked by frequency of occurrence)B = Bigram (Ranked by frequency of occurrence)C = Unigram (Ranked by P. Mutual Information Measure)

D = Two Term Clusters (Topic Modelling)E = Three Term Clusters (Topic Modelling)F = Four Term Clusters (Topic Modelling)

Discriminatory

miocene eocene oligocene	oligocene	turbidite, sub	omarine fan			
eocene oligocene pliocene	eocene oligocene pliocene	econdary Te	rms (max of	4 words/phrase	es per term)	
oligocene	pliocene	miocene				
pliocene	pliocene	eocene				
		oligocene				
Submit	Submit	pliocene				
		Submit				

Discriminatory

turbidite, submarine fan	●16 ○25 ○50 ○100 ○500
econdary Terms (max of 4 words/phrases per term)	Co-occurrence Window Size
miocene	●16 ○25 ○50 ○100 ○500
eocene	
oligocene	
pliocene	

																_
										turbidite, subi	marir	ne fan				
		miocene	,					eocene						oligocene	•	
Unigram		Bigram detormation		Unique tormation		Unigram Bigram		Unique		Unigram		Bigram turbidites				
deep	19	oligocene early	7	ozouri	4	coarse	15	organic matter	5	permanyer significance	4	facies	19	use shell	7	
section	18	middle eocene	7	oligocene Iowest	4	formation	14	oligocene lower	5	naturwissenschaften	4	water	18	sandstone units	7	
slope	17	fan deposits	7	joaquin valley	4	deep	14	lower miocene	5	matter eocene	4	sediments	18	stratigraphic pinchout	6	
reservoir	17	et al	7	joaquin basin	4	stratigraphic	13	late eccene	5	magura unit	4	complex	18	seismic section	6	
figure	17	use shell	6	higher section	4	sands	12	fan deposits	5	magura	4	brazil	18	see fig	6	
thrust	16	source rocks	6	growth faults	4	field	12	biely potok	5	late cretaceous	4	slope	17	sea level	6	
early	16	sea level	6	formation miocene	4	et	12	bacterial gas	5	dagi	4	section	17	et al	6	
deposits	16	potential reservoirs	6	fluvial fan	4	deposits	12	upper eocene	4	bed	4	sandstones	17	water turbidite	5	

Discriminatory

									turbidite, sut	marine fan				
									,					
		miocen	9				AAP	GDat	apages	Search and	l Discovery			Online Jo
Unigran	1	Bigram		Unique		Unigrar								
use	29	early miocene	13	valley california	4	sandstone								
late	29	san joaquin	10	turonian reservoirs	4	late	Home	About	Mobile App	New Articles	Special Collections	Award	IBA	Submissions
turbidites	27	western rif	8	tertiary ozouri	4	sediments								
reservoirs	25	thrust sheet	8	tertiary marine	1	flysch				Download this F	PDF in a full window.		iiii)	Print this page
middle	23	late oligocene	8	society		fan	_			Download this r	Di manun window.			^
fan	22	turbidites deposited	7	senonian tertiary		age	AAP	G Search and	Discovery Article #90017@	2003 AAPG International Co	nference, Barcelona, Spain, Septembe	er 21-24, 2003		L
eccene	2	stratigraphic pinchout	ľ	sandstones cherts	4	sandstones								- B.
stratigraphic		andstone units	7	pre salt	4	reservoirs					AAPG		rcelona,	, Spain
campos		salt deformation	7	ozouri formation	4	fig						Septembe	r 21-24	, 2003
deep	19	oligocene early	7	ozouri	4	coarse								
section	18	middle eccene	7	oligocene Iowest	4	formation		ier Machin I drid, Spain	Palacios ¹ , Jesus Soto	mayor ² , Santiago Ques	ada ¹ (1) Repsol YPF, Madrid, Sp	oain (2) Repso	l YPF, 280)46
slope	17	fan deposits	7	joaquin valley	4	deep	The	e Mio-Plioce	ene Turbidite Syster	n of The Valencia Trou	ıgh			
reservoir	17	et al	7	joaquin basin	4	stratigraphic	The	Valencia t	rough is located in t	ne Western Mediterrane	ean sea, in front of the delta E	bro area fro	m 5 to 10	0 Km
figure	17	use shell	6	higher	4	sands	awa	ay the shore	eline and covers mor	e than 30000 km². Wat	er depth is ranging from 10 m with thickness reaching more	to more than	2000 m d	lepth. A
thrust	16	source rocks	4	growth faults	4	field	sed	iments. Two	o different turbidite	system has been identi	ified, a not confined turbidite conspicuous and restricted tur	system chara	cterized b	y flat
early	16	sea level		ormation miocene	4	et		5.	,	has been proven to be	5 5			
deposits	16	potential reservoirs	6	fluvial fan	4	deposits					on basin in offshore Spain. Mor d Amposta oilfields. The well-k			

Discriminatory

Primary	

turbidite	submarine fan

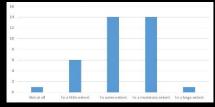
Secondary Terms	(max of 4 words/phrases per term)
miocene	
eocene	
oligocene	
pliocene	

										turbidite, subi	narir	ne fan			
		miocene	•					eocene						oligocene	в
Unigram		Bigram detormation		Unique tormation		Unigram		Bigram		Unique		Unigram		Bigram turbidites	
deep	19	oligocene early	7	ozouri	4	coarse	15	organic matter	5	permanyer significance	4	facies	19	use shell	7
section	18	middle eocene	7	oligocene lowest	4	formation	14	oligocene lower	5	naturwissenschaften	4	water	18	sandstone units	7
slope	17	fan deposits	7	joaquin valley	4	deep	14	lower miocene	5	matter eocene	4	sediments	18	stratigraphic pinchout	6
reservoir	17	et al	7	joaquin basin	4	stratigraphic	13	late eocene	5	magura unit	4	complex	18	seismic section	6
figure	17	use shell	6	higher section	4	sands	12	fan deposits	5	magura	4	brazil	18	see fig	6
thrust	16	source rocks	6	growth faults	4	field	12	biely potok	5	late cretaceous	4	slope	17	sea level	6
early	16	sea level	6	formation miocene	4	et	12	bacterial gas	5	dagi	4	section	17	et al	6 9
deposits	16	potential reservoirs	6	fluvial fan	4	deposits	12	upper eocene	4	bed	4	sandstones	17	water turbidite	5

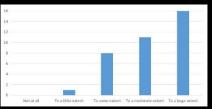
Similarity

Kimmeridge Clay Formation,	Find Similar

Dis	Cľ	in	ninatory	Similari	ty		
Prima	ary Ter	rms	Co-occurrenc	ce Window Size	nmeridge Clay Formation,		Find Similar
Secon	cene ene	Term	Why similar?		VAME	SIMILARITY	COUNT
	ocene cene				bjerg Formation	75%	12
Su	ıbmit		17% 30%	Depositional Environ	mation	71%	21
			4%	LithologyGeological Age	rmation	68%	142
Unigram	19	detor	10%	Regional Setting	Audstone Fm.	66%	8
section	18	ea mi eor		Formation properties	ormation	64%	32
slope	17	fan di	39%				
figure		use			Formation	62%	69
thrust	16	soi ro			i Formation	61%	13
early	16	sea				0170	15
deposits	16	poti rese					



To what extent can word co-occurrence facilitate serendipity? (53 geoscientists in two oil and gas companies)



Journal of Information & Knowledge Management (Cleverley and Burnett 2015)

To what extent do current search interfaces in your organization facilitate serendipitous discovery? 41% - To a moderate/large extent

To what extent could word co-occurrence techniques facilitate serendipitous discovery? 73% - To a moderate/large extent

Summary: Opportunity to move 'search' from *just* a *time-saving* utility to a *value adding* creative assistant

"Using these techniques, word associations highlighted new and unexpected terms This surprising result led us to consider a new geological element which could impact our opportunity"

New Venture Geologist Multinational Oil & Gas Company "The research has direct implications for many of our own studies at NASA including the efficacy of enterprise search..

The concept of 'Facilitating Serendipity' offers an exemplary model .. that can be communicated with groups and individuals at many levels."

Office of the Chief Knowledge Officer (CKO) NASA Johnson Space Centre (JSC)

<u>Email: p.h.cleverley@rgu.ac.uk Blog: www.paulhcleverley.com</u>

